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We consider a growth medium with an infinite volume and a constant substrate con-
centration S in which cells are growing. The total biomass of these cells increases
exponentially. During balanced growth, in an exponentially growing system, every ex-
tensive variable X , like total pools of cellular components, total intracellular volume,
total membrane surface etc., increases in time (t) with the same factor (µ) relative to
its size:

dX
dt

= µ ·X (1)

The exponential factor µ is called the “specific growth rate”. The solution to this
differential equation describes exponential growth of a self-replicating system:

X(t) = Xt=0 · eµ·t (2)

From equation (1) it follows that the sum of the rates (v) of synthesis and degradation
processes for X are balanced with the growth of X :

dX
dt
−µ ·X = ∑vsynthesis−∑vdegradation−µ ·X = 0 (3)

The fact that all extensive variables increase with the same relative growth rate implies
that any two extensive variables Xm and Xn will have constant ratios, or in other words
that the composition of the cells remains constant. This condition corresponds to the
definition of balanced growth (Ingraham et al., 1983):

d(Xm/Xn)

dt
=

1
Xn
·
(

dXm

dt
− Xm

Xn
· dXn

dt

)
=

1
Xn
· (µ ·Xm−µ ·Xm) = 0

Since we want to determine the relation between the relative growth rate and the (time-
invariant) composition of a cell we need to define a system of equations in terms of the
extensive variables relative to a reference extensive variable. The extensive variables

1



will then transform to intensive variables. The most natural choice for such a reference
extensive variable is that of the total intracellular volume Vol. Any extensive variable
that refers to a total pool NX of a compound X will thus transform to the concentration1

of that compound, written in this document as cX = NX/Vol. The total intracellular
volume of the cells is proportional to the total membrane surface with a proportionality
factor β that equals the volume/surface ratio of the particular cell-shape. Here we
assume that the membrane is made up of lipid and transporter molecules. Nlip and
Ntr are the total pool sizes of lipid and transporter molecules and Alip and Atr are the
specific surfaces of lipid and transporter molecules:

Vol = β ·
(
Alip ·Nlip +Atr ·Ntr

)
(4)

Expressing this equation relative to the total intracellular volume by dividing both sides
of equation (4) by Vol yields:

1 = β ·
(
Alip · clip +Atr · ctr

)
(5)

where clip and ctr are the ratios of lipid and transporter relative to intracellular volume
(Nlip/Vol and Ntr/Vol, respectively).To illustrate the relation of a shape factor to cellu-
lar dimensions: the shape factor of a cylindrically shaped cell with infinite length and
a variable diameter r would be:

β =
r
2

And for a more realistic cylindrically shaped cell with constant diameter R, hemispher-
ically shaped poles and a variable length d it would be:

β =
3 ·d ·R+4 ·R2

6 ·d +12 ·R

In this case β would vary between R/3 at d = 0 (coccus-like shape) and R/2 at high d
(filamentous shape)2.

The system of equations
The system of equations is stated in terms of intensive variables, relative to the intra-
cellular volume (cX for each cell component X).

Definition and classification of cellular components
We define all cellular components as the set Cmp. The set of proteins Prot is a subset
of Cmp, as is the set of metabolites Met. Prot and Met have no components in common
and together form the complete set of cellular components:

Prot ∩Met = /0
Prot ∪Met ≡Cmp

1Strictly, we should only speak of the pool/volume ratio since, for example for compounds located in the
membrane, this ratio can not be interpreted as the chemical concentration.

2Here, a bigger more filamentous cell has a larger surface/volume ratio because a sphere has the lowest
surface/volume ratio possible. Filamentation of microorganisms is often observed in response to nutrient
limitation.
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The set of enzymes Enz is a subset of Prot. Enz includes the ribosomes. The set of
membrane located components Mem is a subset of Cmp and may contain elements
belonging to Prot (like transporters) or Met (like lipids). In the models described here
Mem consists only of lipid and transporter proteins.

Enz⊂ Prot

Mem⊂Cmp

Memp is the set of proteins located in the membrane:

Memp≡Mem∩Prot

Cell volume
The first equation is a generalization and slight modification of equation (5) and relates
the membrane surface to the intracellular volume via the cell shape factor β :

1 = β · ∑
i∈Mem

Ai · ci (I)

Mass balance equations
Proteins are synthesized by the ribosome, including the ribosome itself. We model
regulation of protein synthesis by assuming that a certain fraction a j of the ribosomes
is occupied with the synthesis of protein j. As for any cell component (3), the synthesis
of each protein j has to be in balance with the growth rate. This results in the following
system of equations:

α j · vrib−µ · c j = 0 for all j ∈ Prot (II)

where vrib is the catalytic rate of the total ribosome pool. It also implies that the α j’s
are non-negative and add up to one:

α j ≥ 0 for all j ∈ Prot (C1)

∑
j∈Prot

α j = 1 (III)

The synthesis and degradation of metabolites can be conveniently written using a nota-
tion that includes the reaction stoichiometry matrix (Clarke, 1980). For metabolites as
well, the sum of synthesis and degradation rates has to be in balance with the growth
rate:

∑
n∈Enz

amn · vn−µ · cm = 0 for all m ∈Met (IV)

In the reaction stoichiometry matrix the factors amn register how much of metabolite
m is produced (positive amn) or consumed (negative amn) in the elementary reaction
catalized by enzyme n.

Additional constraints
Life is subject to physical and biochemical constraints and it often seeks the boundaries
of these constraints when optimizing fitness (Koch, 1985). Such constraints are mod-
elled here as mathematical inequalities. To meet the requirements of the claim that our
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model derives from first principles, these constraints need to be carefully formulated,
i.e. they should derive from basic (bio)physical knowledge. In this model we used
three types of constraints.

Positive variables
The regulation factors α j are positive (see (C1)) because a negative factor would imply
that the ribosomes would consume a protein, which is an unlikely event. Also, all
concentrations are positive because negative concentrations cX are not compatible with
physical reality.

cX ≥ 0 for all X ∈Cmp (C2)

Membrane integrity
The membrane of the described model cell consists of transporter proteins and lipid.
In real cells typically half of the membrane consists of membrane proteins (Kadner,
1996), implying that membrane proteins are a substantial factor in determining the
intracellular volume. Optimization of the growth rate of the model cell would usually
lead to a cell that produces no lipid, because lipid has no enzymatic function but its
production requires the consumption of resources that could be employed for synthesis
of enzymes. The reason that lipids are produced is because they are important for
membrane integrity. Here we mimic this fact by stating that it is necessary to have a
membrane protein/lipid ratio of maximally PLmax:

∑p∈Memp cp

clip
≤ PLmax (C3)

The value chosen in the model simulations below was PLmax = 1.

Volume occupied by proteins
Proteins occupy a certain volume, which means that the intracellular volume must be
minimally equal to this protein volume plus the volume of some water and metabo-
lites. In this model we mimic this fact by stating that the total intracellular protein
concentration is less than or equal to a maximal value Pmax:

∑
j∈Prot

c j ≤ Pmax (C4)

The value chosen in the model simulations below was Pmax = 1. In the model simula-
tions this constraint is usually “acive”-, meaning that the intracellular volume of cells
is packed with proteins to a maximal density, as is observed in real cells (Zimmerman
& Trach, 1991). One could, to make a more realistic simulation, impose a similar con-
straint on the sum of all intracellular metabolites, or for example on the water activity,
expressed as a function of all the intracellular components. We only used the simple
constraint (C4) in the models presented here.

4



Numerical simulations and models

Optimizing the growth rate
The system of equations I-IV and C1-C5 explicitly contains the growth rate µ , which
is the variable that we want to maximize, also called the “objective variable” in opti-
mization problems. For a given set of extracellular substrate concentration value Sk of
compounds k, a given set of values for the ribosomal fractions α j satisfying equality
III, and a given cell shape factor β the remaining equalities I, II and IV always yield a
system of n nonlinear equations with n unknowns, where n equals one plus the number
of cellular metabolites (including lipids) plus the number of proteins. The unknowns
are µ and the concentrations of metabolites and proteins. Under given Sk, α j and β the
system may or may not have a feasible solution, i.e. a solution within the boundaries
imposed by constraints C1-C4. The optimization task is to choose the α j and β in such
a way that, for a given set of values Sk, the solution is both in the feasible region, and
maximizes µ in that region. This task can be summarized as follows:

maximize µ (objective variable)
subject to eqn. I-IV (equality constraints)
and to eqn. C1-C4 (inequality constraints)
given Sk (extracellular substrate concentration of

compound k)

We can choose either to perform this optimization at a constant cell-shape param-
eter β , or to include β as a variable in the optimization of µ . There is something to
say for the latter, because it is observed that cells make considerable adaptations to the
volume/surface ratio in response to feeding conditions (Ingraham et al., 1983; Koch,
1996). In the models presented here we allow β to vary from 0 to ∞. In this case,
constraint (C4) is of particular importance since in its absence the optimality condition
would let β tend to 0, which would lead to numerical instability.

The system of equations is nonlinear in the variables, hence we are dealing with
nonlinear optimization problems. These optimization problems were solved using
the GAMS modelling and optimization system (version 22.6, http://www.gams.
com). The trial-licensed KNITRO solver was used to solve the models. To confirm
global optimality, these solutions were checked against solutions obtained with the
LINDOGlobal solver on the NEOS server (http://www-neos.mcs.anl.gov/) us-
ing both the default and the multistart options. Parameter perturbation analysis revealed
that, qualitatively, results stay the same over a range of values around the actual con-
stants used in the model (see as an example the sensitivity analysis of model B below).
Therefore, the conclusions drawn in this work are of a general nature for systems as
described here. The models formulated in GAMS language, including a description on
how to solve them can be found in the file “suppl_models.zip”.

Model A: the basic model
The basic model consists of four proteins (ribosome, transporter, metabolic enzyme,
lipid biosynthesis enzyme), and three metabolites (substrate, metabolic intermediate,
lipid). A schematic drawing of this model is presented in Figure 3 in the paper. The
framework of equations has been described above. The only additional information
needed to specify the basic model are the enzyme rate equations, i.e. how the vn and
vrib in equations (IV) and (II) depend on the concentrations of metabolites. We model
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these as simple Michaelis-Menten equations. The equations and parameter values are
given in Table 1.

Model B: alternative metabolic pathways
In this model we replace the metabolic pathway of the basic model with two alternative
metabolic pathways. In fact, the new metabolically efficient pathway MetEf has the
same kinetic characteristics as the original pathway. The catalytically efficient pathway
CatEf has Michaelis-Menten type kinetics with a higher kcat than MetEf, however, it
has a lower yield of precursor with a yield factor γ . The model is summarized in Table
2.

Sensitivity analysis of model B
The results from a sensitivity analysis in which parameters of model B were systemati-
cally perturbated are given in Table 3. The analysis shows that the existence of the me-
tabolic shift is relatively independent of the parameter values chosen. Two conditions
lead to the disappearance of the metabolic shift, namely a decrease of the Michaelis
constant of the MetEf enzyme or an increase of the corresponding parameter of the
CatEf enzyme. The second interesting observation is the fact that both upper limit
constraints are active, i.e. the actual values P and PL equal the maximum under all
conditions. This is also the case when the upper limits Pmax and PLmax are decreased
or increased to very high values. The third observation is that although all parameters
have an effect on the substrate concentration at which the metabolic shift takes place
(Sshi f t ), some have very large effects. The (discrete) control coefficient Cshi f t allows
a comparison of these parameter effects. It is perhaps no surprise that changes in the
kinetics of the alternative metabolic pathways CatEf and MetEf have large effects on
Sshi f t , but Table 3 shows that also transporter kinetics (kcattr and Kmtr) has large ef-
fects. Interpreted in terms of investments, it suggests that when heavy investments
must be made by the cell to gather scarce substrate (low concentrations of S) using an
inefficient transporter (i.e. with high Kmtr or low kcattr), it tends to be beneficial to
maximize the biomass yield by using a metabolically efficient pathway.

Model C: alternative metabolic ATP-generating pathways
In this model we replace the metabolic pathway of the basic model with two alterna-
tive ATP generating pathways, and we add an intermediate metabolite that need to be
“activated” by ATP to become the biomass precursor. As in model B, the MetEf path-
way is metabolically efficient, generating one ATP per substrate molecule. The CatEf
pathway is metabolically inefficient, only generating γ < 1 ATP per substrate, but has
a higher kcat than the MetEf pathway. The model is summarized in Table 4.

Model D: growth on two substrates
To investigate the effect of one limiting substrate on the efficiency of metabolism of
another substrate, we construct a model of a cell growing on two substrates. The basic
model was left intact and an additional N-substrate was introduced (to indicate that one
could think of a nitrogen source as the second substrate). This N-substrate is imported
in the cell by a second transporter (N-transporter) and in a reaction catalyzed by the
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ribosome combines with the metabolite to form the building blocks of the proteins.
The model is summarized in Table 5.

Model E: the production of recombinant protein
The production of recombinant protein is simulated by letting the cell produce a certain
pre-determined fraction (αdummy) of “dummy” protein, i.e. a protein that has no other
function than that a fraction of ribosomes is involved in its synthesis and that it occupies
cell volume. The αdummy is, of course, unlike the other α j’s a constant parameter
and not a variable in optimization. Consequently, to simulate recombinant protein
production equation (III) in model B is modified as follows:

∑
j∈Prot

α j = 1−αdummy (IIIa)

The rest of the model is exactly the same as model B.
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Table 3: Sensitivity analysis1 of the the model with alternative metabolic pathways (see
Table 2)
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7 3 5 10 5 1 1 1 1 1 1 1 0.587 0.268 na7 1.0 1.0

3.5 0.452 0.801 -1.6 1.0 1.0
14 0.714 0.108 -1.3 1.0 1.0

1.5 0.440 0.268 0.0 1.0 1.0
6 0.718 0.322 0.3 1.0 1.0

2.5 5 0.477 0.129 1.1 1.0 1.0
10 20 0.680 0.801 1.6 1.0 1.0

2.5 0.552 0.322 -0.3 1.0 1.0
10 0.608 0.268 0.0 1.0 1.0

0.2 0.588 0.052 1.0 1.0 1.0
5 0.579 1.660 1.1 1.0 1.0

0.2 0.699 0.386 -0.2 1.0 1.0
5 0.418 0.223 -0.1 1.0 1.0

0.2 0.612 no shift na 1.0 1.0
5 0.587 0.036 -1.2 1.0 1.0

0.2 0.657 0.108 0.6 1.0 1.0
5 0.534 no shift na 1.0 1.0

0.2 0.602 0.268 0.0 1.0 1.0
5 0.531 0.322 0.1 1.0 1.0

0.5 0.474 0.186 0.5 0.5 1.0
2 0.702 0.463 0.8 2.0 1.0
20 1.018 1.384 0.5 20 1.0
200 1.178 3.443 0.4 200 1.0

0.5 0.517 0.556 -1.1 1.0 0.5
2 0.632 0.223 -0.3 1.0 2.0
20 0.683 0.155 -0.0 1.0 20
200 0.688 0.129 -0.0 1.0 200

1The first line shows the reference parameter settings and results from the original model (Table 2). Sub-
sequent lines show simulations with perturbated parameters. Only the perturbated parameter values are
displayed. Note that the kcat ’s of the metabolic enzymes CatEf and MetEf were changed concomittantly to
guarantee the condition that one route is catalytically efficient while the other is metabolically efficient.
2µ100: The growth rate at substrate concentration S = 100. This value is close to the maximal growth rate.
3Sshi f t : Calculated as the average substrate concentration of the substrate concentrations flanking the step-
wise metabolic shift.
4Cshi f t : The discrete control coefficient of the perturbed parameter p on Sshi f t , calculated as
∆log(Sshi f t)/∆log(p), where the changes were calculated relative to the reference values in the first row,
or in case of parameter values 20 and 200 for Pmax and PLmax relative to the Sshi f t values corresponding
to parameter values 2 and 20, respectively. Negative values of Cshi f t indicate a decrease of Sshi f t with an
increase of the parameter value.
5avgP: The average of the sum of intracellular protein concentrations over the range of 55 substrate concen-
tration values used in one simulation.
6avgPL: The average of the membrane protein/lipid ratios over the range of 55 substrate concentration values
used in one simulation.
7na: not applicable
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